Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(10): 11969-11975, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497025

RESUMO

Compared with stereoselective glycosylation methods mainly addressed on the preparation of pyranose glycosides, the furanosylation has been more limited, especially for the 1,2-cis arabinofuranosylation. Herein, we report a novel stereoselective 1,2-cis-arabinofuranosylation strategy using a conformationally restricted 3,5-O-xylylene-protected arabinofuranosyl donor on activation with B(C6F5)3 for desired targets in moderate to excellent yields and ß-stereoselectivity. The effectiveness of the 1,2-cis-arabinofuranosylation strategy was demonstrated successfully with various acceptors, including carbohydrate alcohols.

2.
Front Oncol ; 14: 1350935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344206

RESUMO

Breast cancer (BC) is the most prevalent malignancy among women worldwide. Traditional research models such as primary cancer cell and patient-derived tumor xenografts (PDTXs) have limitations. Cancer cells lack a tumor microenvironment (TME) and genetic diversity, whereas PDTXs are expensive and have a time-consuming preparation protocol. Therefore, alternative research models are warranted. Patient-derived organoids (PDOs) are a promising in vitro model. They mimic the TME, gene expression, and cell types of original cancer tissues. PDOs have been successfully developed from various cancers, including BC. In this review, we focused on the value and limitations of PDOs in BC research, including their characteristics and potential in drug development, personalized therapy, immunotherapy, and the application prospects of PDOs in drug testing and prognosis.

3.
Mol Ther ; 32(3): 749-765, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38310356

RESUMO

Approximately 80%-90% of hepatocellular carcinomas (HCC) occur in a premalignant environment of fibrosis and abnormal extracellular matrix (ECM), highlighting an essential role of ECM in the tumorigenesis and progress of HCC. However, the determinants of ECM in HCC are poorly defined. Here, we show that nuclear receptor RORγ is highly expressed and amplified in HCC tumors. RORγ functions as an essential activator of the matrisome program via directly driving the expression of major ECM genes in HCC cells. Elevated RORγ increases fibronectin-1 deposition, cell-matrix adhesion, and collagen production, creating a favorable microenvironment to boost liver cancer metastasis. Moreover, RORγ antagonists effectively inhibit tumor growth and metastasis in multiple HCC xenografts and immune-intact models, and they effectively sensitize HCC tumors to sorafenib therapy in mice. Notably, elevated RORγ expression is associated with ECM remodeling and metastasis in patients with HCC. Taken together, we identify RORγ as a key player of ECM remodeling in HCC and as an attractive therapeutic target for advanced HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Sorafenibe , Colágeno/metabolismo , Microambiente Tumoral
4.
Int J Pharm ; 651: 123778, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181990

RESUMO

To identify a replacement strategy for bronchial thermoplasty (BT) with non-invasive and free-of-severe side effect is urgently needed in the clinic for severe asthma treatment. In this study, PLGA-PEG@ICG@TRPV1 pAb (PIT) photothermal nanoparticles targeting bronchial TRPV1 were designed for photothermal therapy (PTT) against severe murine asthma induced by ovalbumin and lipopolysaccharide. PIT was formulated with a polyethylene glycol (PEG)-grafted poly (lactic-co-glycolic) acid (PLGA) coating as a skeleton structure to encapsulate indocyanine green (ICG) and was conjugated to the polyclonal antibody against transient receptor potential vanilloid 1 (TRPV1 pAb). The results revealed that PIT held good druggability due to its electronegativity and small diameter. PIT demonstrated great photothermal effects both in vivo and in vitro and exhibited good ability to target TRPV1 in vitro because of its selective cell uptake and specific cell toxicity toward TRPV1-overexpressing cells. The PIT treatment effectively reduced asthma symptoms in mice. This is evident from improvements in expiratory airflow limitation, significant decreases in inflammatory cell infiltration in the airways, and increases in goblet cell and columnar epithelial cell proliferation. In conclusion, PIT alleviates severe murine asthma symptoms through a combination of TRPV1 targeting and photothermal effects.


Assuntos
Antineoplásicos , Asma , Nanopartículas , Animais , Camundongos , Verde de Indocianina , Fototerapia/métodos , Ovalbumina , Lipopolissacarídeos , Nanopartículas/química , Polietilenoglicóis/química , Asma/tratamento farmacológico , Linhagem Celular Tumoral , Canais de Cátion TRPV
5.
Int J Pharm ; 649: 123638, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38008233

RESUMO

The characteristics of biofilms have exacerbated the issue of clinical antibiotic resistance, rendering it a pressing challenge in need of resolution. The combination of biofilm-dispersing agents and antibiotics can eliminate biofilms and promote healing synergistically in infected wounds. In this study, we developed a novel nanocomposite hydrogel (NC gel) comprised of the poly(lactic acid)-hyperbranched polyglycerol (PLA-HPG) based bioadhesive nanoparticles (BNPs) and a hydrophilic carboxymethyl chitosan (CS) network. The NC gel was designed to co-deliver two biofilm-dispersing agents (an NO-donor SNO, and an α-amylase Am) and an antibiotic, cefepime (Cef), utilizing a synergistic anti-biofilm mechanism in which Am loosens the matrix structure and NO promotes the release of biofilm bacteria via quorum sensing, and Cef kills bacteria. The drug-loaded NC gel (SNO/BNP/CS@Am-Cef) demonstrated sustained drug release, minimal cytotoxicity, and increased drug-bacterial interactions at the site of infection. When applied to mice infected with methicillin-resistant Staphylococcus aureus (MRSA) biofilms in vivo, SNO/BNP/CS@Am-Cef enhanced biofilm elimination and promoted wound healing compared to traditional antibiotic treatments. Our work demonstrates the feasibility of the co-delivery of biofilm-dispersing agents and antibiotics using the NC gel and presents a promising approach for the polytherapy of bacterial biofilm-related infections.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Animais , Camundongos , Nanogéis , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Hidrogéis/química , Testes de Sensibilidade Microbiana
6.
Acta Biomater ; 174: 297-313, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096960

RESUMO

The transcription factor Olig2 is highly expressed throughout oligodendroglial development and is needed for the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes and remyelination. Although Olig2 overexpression in OPCs is a possible therapeutic target for enhancing myelin repair in ischemic stroke, achieving Olig2 overexpression in vivo remains a formidable technological challenge. To address this challenge, we employed lipid nanoparticle (LNP)-mediated delivery of Olig2 synthetically modified messenger RNA (mRNA) as a viable method for in vivo Olih2 protein overexpression. Specifically, we developed CD140a-targeted LNPs loaded with Olig2 mRNA (C-Olig2) to achieve targeted Olig2 protein expression within PDGFRα+ OPCs, with the goal of promoting remyelination for ischemic stroke therapy. We show that C-Olig2 promotes the differentiation of PDGFRα+ OPCs derived from mouse neural stem cells into mature oligodendrocytes in vitro, suggesting that mRNA-mediated Olig2 overexpression is a rational approach to promote oligodendrocyte differentiation and remyelination. Furthermore, when C-Olig2 was administered to a murine model of ischemic stroke, it led to improvements in blood‒brain barrier (BBB) integrity, enhanced remyelination, and rescued learning and cognitive deficits. Our comprehensive analysis, which included bulk RNA sequencing (RNA-seq) and single-nucleus RNA-seq (snRNA-seq), revealed upregulated biological processes related to learning and memory in the brains of mice treated with C-Olig2 compared to those receiving empty LNPs (Mock). Collectively, our findings highlight the therapeutic potential of multifunctional nanomedicine targeting mRNA expression for ischemic stroke and suggest that this approach holds promise for addressing various brain diseases. STATEMENT OF SIGNIFICANCE: While Olig2 overexpression in OPCs represents a promising therapeutic avenue for enhancing remyelination in ischemic stroke, in vivo strategies for achieving Olig2 expression pose considerable technological challenges. The delivery of mRNA via lipid nanoparticles is considered aa viable approach for in vivo protein expression. In this study, we engineered CD140a-targeted LNPs loaded with Olig2 mRNA (C-Olig2) with the aim of achieving specific Olig2 overexpression in mouse OPCs. Our findings demonstrate that C-Olig2 promotes the differentiation of OPCs into oligodendrocytes in vitro, providing evidence that mRNA-mediated Olig2 overexpression is a rational strategy to foster remyelination. Furthermore, the intravenous administration of C-Olig2 into a murine model of ischemic stroke not only improved blood-brain barrier integrity but also enhanced remyelination and mitigated learning and cognitive deficits. These results underscore the promising therapeutic potential of multifunctional nanomedicine targeting mRNA expression in the context of ischemic stroke.


Assuntos
AVC Isquêmico , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Fator de Transcrição 2 de Oligodendrócitos , AVC Isquêmico/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Modelos Animais de Doenças , Bainha de Mielina , Diferenciação Celular/genética , Oligodendroglia , Isquemia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Small Methods ; : e2301295, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084464

RESUMO

Hypertrophic scarring (HS) is a common skin injury complication with unmet needs. Verteporfin (VP) should be an ideal HS-targeted therapeutic drug due to its efficient fibrosis and angiogenesis inhibitory abilities. However, its application is restricted by its side effects such as dose-dependent cytotoxicity on normal cells. Herein, the bioadhesive nanoparticles encapsulated VP (VP/BNPs) are successfully developed to attenuate the side effects of VP and enhance its HS inhibition effects by limiting VP releasing slowly and stably in the lesion site but not diffusing easily to normal tissues. VP/BNPs displayed significant inhibition on the proliferation, migration, collagen deposition, and vessel formation of human hypertrophic scar fibroblasts (HSFBs) and dermal vascular endothelial cells (HDVECs). In a rat tail HS model, VP/BNPs treated HS exhibits dramatic scar repression with almost no side effects compared with free VP or VP-loaded non-bioadhesive nanoparticles (VP/NNPs) administration. Further immunofluorescence analysis on scar tissue serial sections validated VP/BNPs effectively inhibited the collagen deposition and angiogenesis by firmly confined in the scar tissue and persistently releasing VP targeted to nucleus Yes-associated protein (nYAP) of HSFBs and HDVECs. These findings collectively suggest that VP/BNPs can be a promising and technically advantageous agent for HS therapies.

8.
Adv Healthc Mater ; : e2302443, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962054

RESUMO

Although immunosuppressive drugs for targeting T cells are the standard of care in acute transplantation rejection, the role of innate immune cells should not be ignored. Here, single-cell RNA sequencing (scRNA-seq) and flow cytometry are performed to reveal the dynamic changes of innate immune cells within the acute rejection time and find a significantly-increased presence of Ly6G- Ly6C+ inflammatory macrophages and decreased presence of neutrophils among all types of immune cells. Next, to further explore potential targets regulating Ly6G- Ly6C+ inflammatory macrophages, scRNA-seq is used to analyze the reciprocal signaling of both neutrophils and macrophages, along with the surface genes of macrophages. It is found that activating colony-stimulating factor 1/ colony-stimulating factor 1 receptor (CSF1/CSF1R) andcluster of differentiation 47/signal regulatory protein α (CD47/SIRPα) signaling may serve as a strategy to relieve Ly6G- Ly6C+ inflammatory macrophage-mediated early graft rejection. To investigate this hypothesis, CSF1/CD47 dual-targeting nanovesicles (NVs) derived from IFN-γ-stimulated induced pluripotent stem cell-derived mesenchymal stem cells ( iPSC-MSCs )are designed and constructed. It is confirmed that CSF1/CD47 NVs synergistically induce the differentiation of Ly6G- Ly6C- M2 inhibitory macrophages by the CSF1/CSF1R pathway, and inhibit the phagocytosis of inflammatory macrophages and inflammatory response by the CD47/SIRPα pathway, ultimately relieving immune rejection. This study highlights the power of dual-targeting CSF1/CD47 NVs as an immunosuppressant against early innate immune responses with the potential for broad clinical applications.

9.
Food Funct ; 14(21): 9841-9856, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850547

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and characterized by emphysema, small airway remodeling and mucus hypersecretion. Citrus peels have been widely used as food spices and in traditional Chinese medicine for chronic lung disease. Given that citrus peels are known for containing antioxidants and anti-inflammatory compounds, we hypothesize that citrus peel intake can suppress oxidative stress and inflammatory response to air pollution exposure, thereby alleviating COPD-like pathologies. This study aimed to investigate the efficacy of citrus peel extract, namely Guang Chenpi (GC), in preventing the development of COPD induced by diesel exhaust particles (DEPs) and its potential mechanism. DEP-induced COPD-like lung pathologies, inflammatory responses and oxidative stress with or without GC treatment were examined in vivo and in vitro. Our in vivo study showed that GC was effective in decreasing inflammatory cell counts and inflammatory mediator (IL-17A and TNF-α) concentrations in bronchoalveolar lavage fluid (BALF). Pretreatment with GC extract also significantly decreased oxidative stress in the serum and lung tissue of DEP-induced COPD rats. Furthermore, GC pretreatment effectively reduced goblet cell hyperplasia (PAS positive cells) and fibrosis of the small airways, decreased macrophage infiltration as well as carbon loading in the peripheral lungs, and facilitated the resolution of emphysema and small airway remodeling in DEP-induced COPD rats. An in vitro free radical scavenging assay revealed robust antioxidant potential of GC in scavenging DPPH free radicals. Moreover, GC demonstrated potent capacities in reducing ROS production and enhancing SOD activity in BEAS-2B cells stimulated by DEPs. GC treatment significantly attenuated the increased level of IL-8 and MUC5AC from DEP-treated BEAS-2B cells. Mechanistically, GC treatment upregulated the protein level of Nrf-2 and could function via MAPK/NF-κB signaling pathways by suppressing the phosphorylation of p38, JNK and p65. Citrus peel extract is effective in decreasing oxidative stress and inflammatory responses of the peripheral lungs to DEP exposure. These protective effects further contributed to the resolution of COPD-like pathologies.


Assuntos
Citrus , Enfisema , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Emissões de Veículos/toxicidade , Citrus/metabolismo , Remodelação das Vias Aéreas , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Líquido da Lavagem Broncoalveolar/química , Enfisema/metabolismo
11.
ACS Nano ; 17(15): 14943-14953, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37485891

RESUMO

Excessive ultraviolet (UV) radiation can lead to a series of skin problems. Although commercial sunscreens can protect skin from UV-induced damage to an extent, the side effects caused by such products are still worrisome. Here, inspired by the natural photoprotection effect of human hair, we extracted the multifunctional particles from human hair as sunscreens for UV protection. Both in vitro and in vivo results indicate that hair-derived particles (HDPs) could effectively protect skin from UV radiation. Besides, HDPs retain the antioxidant capability of melanin in hair, which avoids UV-induced oxidative damage. In addition, the unique shape of HDPs can prevent them from penetrating into the skin, thus avoiding potential toxicity. Moreover, owing to their mesoporous structure, the particles can also be used as drug carriers. With the loading of octocrylene, the particles are more effective in blocking UV radiation. This study provides an ingenious tactic for the design and development of sunscreens from a natural substance.


Assuntos
Neoplasias Cutâneas , Protetores Solares , Humanos , Protetores Solares/farmacologia , Protetores Solares/química , Protetores Solares/uso terapêutico , Pele , Raios Ultravioleta/efeitos adversos , Neoplasias Cutâneas/tratamento farmacológico , Cabelo
12.
J Med Chem ; 66(12): 8086-8102, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37268593

RESUMO

Protein lysine methyltransferases G9a and GLP, which catalyze mono- and di-methylation of histone H3K9 and nonhistone proteins, play important roles in diverse cellular processes. Overexpression or dysregulation of G9a and GLP has been identified in various types of cancer. Here, we report the discovery of a highly potent and selective covalent inhibitor 27 of G9a/GLP via the structure-based drug design approach following structure-activity relationship exploration and cellular potency optimization. Mass spectrometry assays and washout experiments confirmed its covalent inhibition mechanism. Compound 27 displayed improved potency in inhibiting the proliferation and colony formation of PANC-1 and MDA-MB-231 cell lines and exhibited enhanced potency in reducing the levels of H3K9me2 in cells compared to noncovalent inhibitor 26. In vivo, 27 showed significant antitumor efficacy in the PANC-1 xenograft model with good safety. These results clearly indicate that 27 is a highly potent and selective covalent inhibitor of G9a/GLP.


Assuntos
Inibidores Enzimáticos , Lisina , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/química , Histonas/metabolismo , Relação Estrutura-Atividade , Histona-Lisina N-Metiltransferase
13.
ACS Appl Mater Interfaces ; 15(19): 22892-22902, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37154428

RESUMO

Ocular formulations should provide an effective antibiotic concentration at the site of infection to treat bacterial eye infections. However, tears and frequent blinking accelerate the drug clearance rate and limit drug residence time on the ocular surface. This study describes a biological adhesion reticulate structure (BNP/CA-PEG) consisting of antibiotic-loaded bioadhesion nanoparticles (BNP/CA), with an average 500-600 nm diameter, and eight-arm NH2-PEG-NH2 for local and extended ocular drug delivery. This retention-prolonging effect is a function of the Schiff base reaction between groups on the surface of BNP and amidogen on PEG. BNP/CA-PEG showed significantly higher adhesion properties and better treatment efficacy in an ocular rat model with conjunctivitis in comparison to non-adhesive nanoparticles, BNP, or free antibiotics. Both in vivo safety experiment and in vitro cytotoxicity test verified the biocompatibility and biosafety of the biological adhesion reticulate structure, indicating a promising translational prospect for further clinical use.


Assuntos
Conjuntivite Bacteriana , Nanopartículas , Ratos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Sistemas de Liberação de Medicamentos , Conjuntivite Bacteriana/tratamento farmacológico , Nanopartículas/química , Resultado do Tratamento
14.
Biomaterials ; 295: 122031, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731367

RESUMO

This study reports an ultrasound-mediated and two-dimensional (2D) porous vermiculite nanosheets (VMT NSs)-based nanocatalyst platform (Arg@VMT@PDA-PEG) that synergistically harnessed the Fenton reaction-based chemodynamic therapy (CDT), 2D semiconductor-based sonodynamic therapy (SDT) and nitric oxide (NO)-based gas therapy for combination cancer therapy. The tumor microenvironment responsive degradation of polydopamine (PDA) shell could not only prevent L-Arg, a NO donor, leakage during blood circulation, but also selectively release the active sites of VMT NSs for catalytic reactions in tumor cells. Additionally, the Fenton reactions mediated by the abundant Fe2+/Fe3+ in VMT NSs could efficiently produce ·OH and consume glutathione (GSH) for CDT. Moreover, the reactive oxygen species (ROS, ·OH and ·O2-) produced by ultrasound-triggered Arg@VMT@PDA-PEG could not only execute SDT but also oxidize L-Arg to NO for synergetic gas therapy. The results show that the transformation of ROS to NO can enhance curative efficacy owing to the ability of NO with much longer life-time in freely diffusing into cells from intercellular space. This biodegradable Arg@VMT@PDA-PEG nanocatalytic platform integrating three different catalytic reactions provides a new therapeutic paradigm for combination cancer therapy.


Assuntos
Arginina , Neoplasias , Humanos , Porosidade , Espécies Reativas de Oxigênio , Terapia Combinada , Glutationa , Óxido Nítrico , Linhagem Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrogênio
16.
Commun Biol ; 5(1): 1095, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241911

RESUMO

Transcription factors (TFs) have been introduced to drive the highly efficient differentiation of human-induced pluripotent stem cells (hiPSCs) into lineage-specific oligodendrocytes (OLs). However, effective strategies currently rely mainly on genome-integrating viruses. Here we show that a synthetic modified messenger RNA (smRNA)-based reprogramming method that leads to the generation of transgene-free OLs has been developed. An smRNA encoding a modified form of OLIG2, in which the serine 147 phosphorylation site is replaced with alanine, OLIG2S147A, is designed to reprogram hiPSCs into OLs. We demonstrate that repeated administration of the smRNA encoding OLIG2 S147A lead to higher and more stable protein expression. Using the single-mutant OLIG2 smRNA morphogen, we establish a 6-day smRNA transfection protocol, and glial induction lead to rapid NG2+ OL progenitor cell (OPC) generation (>70% purity) from hiPSC. The smRNA-induced NG2+ OPCs can mature into functional OLs in vitro and promote remyelination in vivo. Taken together, we present a safe and efficient smRNA-driven strategy for hiPSC differentiation into OLs, which may be utilized for therapeutic OPC/OL transplantation in patients with neurodegenerative disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Alanina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/farmacologia , Oligodendroglia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina/metabolismo , Fatores de Transcrição/metabolismo
17.
Front Pharmacol ; 13: 998245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160399

RESUMO

Transforming growth factor ß receptor (TGF-ß1R) and receptor tyrosine kinases (RTKs), such as VEGFRs, PDGFRs and FGFRs are considered important therapeutic targets in blocking myofibroblast migration and activation of idiopathic pulmonary fibrosis (IPF). To screen and design innovative prodrug to simultaneously target these four classes of receptors, we proposed an approach based on network pharmacology combining virtual screening and machine learning activity prediction, followed by efficient in vitro and in vivo models to evaluate drug activity. We first constructed Collagen1A2-A549 cells with type I collagen as the main biomarker and evaluated the activity of compounds to inhibit collagen expression at the cellular level. The data from the first round of Collagen1A2-A549 cell screening were substituted into the machine learning model, and the model was optimized accordingly. As a result, the false positive rate of the model was reduced from 85.0% to 66.7%, and two prospective compounds, Z103080500 and Z104578368, were finally selected. Collagen levels were reduced effectively by both Z103080500 (67.88% reduction) and Z104578368 (69.54% reduction). Moreover, these two compounds showed low cellular cytotoxicity. Subsequently, the effect of Z103080500 and Z104578368 was evaluated in a bleomycin-induced C57BL/6 mouse IPF model. These results showed that 50 mg/kg Z103080500 and Z104578368 could effectively reduce the number of inflammatory cells and the expression level of α-SMA. Meanwhile, Z103080500 and Z104578368 reduced the expression of major markers and inflammatory factors of IPF, such as collagen, IFN-γ, IL-17 and HYP, indicating that these screened Z103080500 and Z104578368 effectively delayed lung tissue inflammation and had a potential therapeutic effect on IPF. Our findings demonstrate that a screening and evaluation model for prodrug against IPF has been successfully established. It is of great significance to further modify these compounds to enhance their potency and activity.

19.
Biomaterials ; 289: 121791, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36084481

RESUMO

Fenton reaction-based chemodynamic therapy is hardly a self-sufficient cancer treatment, due to its stringent reaction conditions, limited substrate concentration, and negative feedback from the tumor microenvironment. Herein, we synthesized a novel two-dimensional (2D) vanadium-based nanosheets (Vanadene, V NSs) with polyvalent surfaces (VIV/VV), a very narrow band gap of 0.8 eV, and high biodegradability by a liquid-phase exfoliation strategy. The polyvalent surface endowed its multiple capabilities to modulate TME through GSH consumption and O2 production via VV and to catalyze a Fenton-like reaction to produce ·OH under a mild condition via VIV. In addition, efficient energy conversions including near-infrared (NIR)-thermal conversion (photothermal therapy, PTT) and NIR-electron conversion (photodynamic therapy, PDT) were ensured by the narrow band gap, in which NIR-thermal conversion enhanced the Fenton-like reaction activity through accelerating ionization while NIR-electron conversion catalyzed the conversion of O2 to ·O2- for further breaking redox homeostasis. Moreover, V NSs-based nanocatalyst can be slowly degraded into non-toxic species, enabling it to be innocuously eliminated from the body after completing tumor eradication by single drug injection and single NIR irradiation. Therefore, this study provides new insights into a universal nanoplatform for NIR-enhanced combination cancer therapy, highlighting the utility of 2D V NSs in the field of biomedicine.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Catálise , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fototerapia/métodos , Microambiente Tumoral , Vanádio
20.
Theranostics ; 12(7): 3131-3149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547747

RESUMO

Rationale: Demyelination is a major component of white matter injury, characterized by oligodendrocyte (OL) death and myelin sheath loss, which result in memory loss and cognitive impairment in the context of ischemic stroke. Accumulating evidence has shown that OLs can be generated by the direct activation of defined transcription factors (TFs) in human induced pluripotent stem cells (hiPSCs); however, the rapid acquisition of single TF-induced OL progenitor cells (OPCs) as cell therapy for ischemic stroke remains to be thoroughly explored. Methods: A stable, chemically defined protocol was used to generate a substantial number of transplantable and functional OLs through the partial inhibition of sonic hedgehog (Shh) activity by GANT61 during neural induction from hiPSCs and sequential induction of TF Olig2 overexpression. Transcriptome and metabolome analyses further revealed a novel molecular event in which Olig2 regulates OL differentiation from hiPSC-derived neural progenitor cells (NPCs). Olig2-induced NG2+ OPCs (Olig2-OPCs) were then evaluated for their therapeutic potential in cell-based therapy for ischemic stroke. Results: GANT61 treatment resulted in a motor neuron (MN)-OL fate switch during neural induction, and induced overexpression of Olig2 accelerated oligodendroglial lineage cell specification. Olig2-OPCs expressed typical oligodendroglial lineage marker genes, including NKX2.2, CSPG4, and ST8SIA1, and displayed superior ability to differentiate into mature OLs in vitro. Mechanistically, Olig2-OPCs showed increased gene expression of the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway, and activated CEPT1-mediated phospholipogenesis. Functionally, inhibiting PPARγ and knocking down CEPT1 further compromised the terminal differentiation of Olig2-OPCs. Most importantly, when transplanted into a rat model of transient middle cerebral artery occlusion (tMCAO), Olig2-OPCs efficiently promoted neurological functional recovery by reducing neuronal death, promoting remyelination, and rescuing spatial memory decline. Conclusions: We developed a stable, chemically defined protocol to generate OPCs/OLs with partial inhibition of Shh activity by GANT61 from hiPSCs and sequentially induced the expression of the single TF Olig2. Olig2-OPC transplantation may be an ideal alternative approach for ischemic stroke rehabilitation therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , AVC Isquêmico , Animais , Diferenciação Celular/genética , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , AVC Isquêmico/terapia , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia , PPAR gama/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...